スポンサーリンク
投稿経済数学中級

経済学でよく使われる「ラグランジュの未定乗数法」の公式

スポンサーリンク
経済学で最適化を行う際に、目的関数に制約式がある場合に「ラグランジュの未定乗数法」が使われます。この公式について、説明しています。
スポンサーリンク
スポンサーリンク

概要

 経済学において、最適化の問題は重要です。
 この場合に、微分が用いられるのですが、制約がある場合には、単純に微分を用いることはできません。

 そこで用いられるのが、「ラグランジュ(Lagrange)の未定乗数法」です。

ラグランジュの未定乗数法

 $ n$個の変数 $ x_1, \cdots ,x_n$ について、$ m$ 個の制約式があり、目的関数の解を求めたいとしましょう。
 すなわち、次式を解きたいと考えるとしましょう。

  $ \max u(x_1, \cdots ,x_n)$
  $ s.t. f_1(x_1, \cdots ,x_n)=0, \cdots , f_m(x_1, \cdots ,x_n)=0 (m \lt n)$

 このとき、ラグランジュ関数 $ L$を 用いて、次式を作ります(なお、このラグランジュ関数 $ L$ は「ラグランジアン」と呼ばれたりもします)。

  $ L(x_1, \cdots ,x_n, \lambda_1 , \cdots , \lambda_m) = u + \lambda_1 f_1 + , \cdots , + \lambda_m f_m$

 そして、ラグランジュ関数 $ L$ について、変数 $ x_i$ 、ラグランジュ乗数 $ \lambda_j$ で偏微分すると、次のような一階の条件が得られます。

  $ \dfrac{\partial u}{\partial x_1} + \lambda_1 \dfrac{\partial f_1}{\partial x_1} + , \cdots , + \lambda_m \dfrac{\partial f_m}{\partial x_1} = 0$
      $ \vdots$
  $ \dfrac{\partial u}{\partial x_n} + \lambda_1 \dfrac{\partial f_1}{\partial x_n} + , \cdots , + \lambda_m \dfrac{\partial f_m}{\partial x_n} = 0$
  $ f_1 = 0$
    $ \vdots$
  $ f_m = 0$

制約式が1つの場合

 上記は、制約式が $ m$ 式ありましたが、基本的な経済モデルにおいては、制約式が1つの場合( $ m=1$ )が多いです。
 このときには、次のような極値問題になります(なお、経済学っぽく、制約式に $ 0$ ではなく、定数 $ E$ をつけてます)。

  $ \max u(x_1, \cdots ,x_n)$
  $ s.t. f(x_1, \cdots ,x_n)=E$

 ラグランジュ関数 $ L$ は、次のようになります。

  $ L(x_1, \cdots ,x_n, \lambda) = u(x_1, \cdots ,x_n) + \lambda (E – f(x_1, \cdots ,x_n))$

 そして、上記と同様に変数 $ x_i$ 、ラグランジュ乗数 $ \lambda$ で偏微分すると、次のような一階の条件が得られます。

  $ \dfrac{\partial u}{\partial x_1} – \lambda \dfrac{\partial f}{\partial x_1} = 0$
      $ \vdots$
  $ \dfrac{\partial u}{\partial x_n} – \lambda \dfrac{\partial f}{\partial x_n} = 0$
  $ E – f(x_1, \cdots ,x_n) = 0$

ラグランジュ乗数 $ \lambda$ について

 ラグランジュ乗数 $ \lambda$ は、「シャドープライス」「潜在価値」と言われたりします。
 なぜならば、制約式が1つの場合で考えると

  $ \dfrac{\partial u}{\partial E} = \lambda$

が成立するからです。すなわち、定数 $ E$ が増加したときの目的関数 $ u$ への影響が、ラグランジュ乗数 $ \lambda$ だからです。

参考

 田中久稔『経済数学入門の入門
 竹中淑子『最適値問題

スポンサーリンク
タイトルとURLをコピーしました