はじめに
最適化問題を解くにあたり、制約式がある場合には、一般的にラグランジュ未定乗数法が用いられます。
ここで、制約について、等式ならばいいのですが、不等式でしたら、そのままラグランジュアンを定義し、微分すればいいというわけにはいきません。
不等式制約条件の場合には、「クーン・タッカー条件」を満たす必要があります。
(なお、翻訳の問題で、「キューン・タッカー条件」と言われたりもします)
クーン・タッカー条件
非線形計画問題
非線形問題として、次のような問題とします。
s.t.
ラグランジュ関数
この非線形問題について、次のようなラグランジュ関数を定義します。
クーン・タッカーの十分条件
このとき、クーン・タッカーの十分条件は、次のようになります。
なお、あくまでも十分条件であり、必要条件を満たすには、別の条件が必要になります。
参考
西村清彦『経済学のための最適化理論入門』
ピーター・バーク、クヌート・シュドセーテル『エコノミスト数学マニュアル』